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OThe dynamic modification of histone proteins by lysine methylation has emerged over the last decade as a key

regulator of chromatin functions. In contrast, our understanding of the biological roles for lysine methylation
of non-histone proteins has progressed more slowly. Though recently it has attracted less attention, ε-methyl-
lysine in non-histone proteins was first observed over 50 years ago. In that time, it has become clear that, like
the case for histones, non-histone methylation represents a key and common signaling process within the cell.
Recent work suggests that non-histone methylation occurs on hundreds of proteins found in both the nucleus
and the cytoplasm, andwith important biomedical implications. Technological advances that allow us to identify
lysinemethylation on a proteomic scale are opening new avenues in the non-histone methylation field, which is
poised for dramatic growth. Here,we reviewhistorical and recentfindings in non-histone lysinemethylation sig-
naling, highlight new methods that are expanding opportunities in the field, and discuss outstanding questions
and future challenges about the role of this fundamental post-translational modification (PTM). This article is
part of a Special Issue entitled: Methylation multifaceted modification — Looking at transcription and beyond.

© 2014 Published by Elsevier B.V.
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C1. Introduction

1.1. Not so new: a historical perspective on non-histone methylation

As with histone methylation, non-histone methylation was discov-
ered long before the field was prepared to study the post-translational
modification. R.P. Ambler and M.W. Rees first reported the presence of
ε-N-methyl-lysine in a natural protein in flagellin from Salmonella
typhimurium in 1959 [1]. Five years later, Kenneth Murray reported
methyl-lysine in histones. Murray based his analysis in part on compar-
ison of the unusual amino acid he found in histones to methyl-lysine
from flagellin [2]. Early reports of lysine methylation focused on chem-
ical identification of the amino acidwithin a small subset of proteins, in-
cluding ribosomal proteins, actin, myosin andmyofibrillar proteins, and
cytochrome c [3–8] reviewed in [9]. Rubisco, themost abundant protein
on the planet [10], was also shown to be methylated [11].

Though today it is established that lysinemethylation is a PTM, a great
deal of work went into showing that the methyl group was added to ly-
sine post-translationally, rather than directly incorporated as methyl-
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lysine during translation. Stocker, McDonough, and Ambler argued that
methylation of flagellins occurred after lysine was incorporated into the
protein because the presence of methyl-lysine was controlled by a gene
other than the gene forflagellin [12]. Incorporation of radioactivemethyl-
ation into methyl-lysine residues was not inhibited by puromycin, a
translation inhibitor, again suggesting that methylation is a PTM [13,14].
Finally, methyl-lysine could not be conjugated to tRNA, which would be
necessary if it were to be incorporated during translation [14].

If the methyl group was incorporated post-translationally, where
did it come from? Using radiolabeling experiments, it was shown that
either methionine or S-adenosyl-methionine could serve as the source
of the methyl group on lysine [2,3,14,15]. Murray proposed that this
methylation might be sequence specific [2], and by 1965, Kim and
Paik argued that methylation in calf thymus nuclei was enzymatic
[14]. In the years that followed, the field continued to focus on identify-
ing new methylated proteins individually and on purifying a limited
number of methylating enzymes (reviewed in [16]). As Woon Ki Paik,
David C. Paik, and Sangduk Kim described it, the field made little prog-
ress in identifying the biological function of thismethylation [16].With-
out a downstream biological outcome for lysine methylation, the
broader significance of adding this moiety was unclear.

Biological insight into histone methylation was fueled by discoveries
like the one from the lab of Thomas Jenuwein identifying the epigenetic
regulator Suv39H1 as a histone lysine methyltransferase [17]. Notably,
comparison with a known non-histone methylation pathway aided the
identification of this histone methylation pathway; Rea et al. hypothe-
sized that Suv39h1 might be a methyltransferase based on its homology
to Rubisco large subunit methyltransferase [17,18]. The availability of
sinemethylation across the proteome, Biochim. Biophys. Acta (2014),
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techniques to study chromatin biology allowed quick bridging of meth-
ylation eventswithdownstreamphenotypic assays. Newassays for chro-
matin biology grew along with the field of histone methylation—for
example, chromatin immunoprecipitation (ChIP) coupled with microar-
rays (ChIP-chip) [19–21] and more recently ChIP coupled with deep
sequencing (ChIP-seq) [22,23]. Just as Paik, Paik, and Kim pointed out
that the advent of modern molecular biology opened up the long strug-
gling field of lysine methylation in general [16], tools for studying gene
regulation and chromatin naturally shifted the focus of the field toward
histones and other chromatin-related proteins. Tool development, as
will be discussed later, is likely to be important for studying lysinemeth-
ylation on non-histone proteins as we move forward.

2. Key examples of non-histone methylation

Non-histone methylation has experienced a moderate renaissance
with the finding that several histone lysine methyltransferases also
methylate other substrates (see [24] for a recent review of lysine meth-
yltransferases (KMTs) and corresponding histone and non-histone tar-
gets). Below we describe regulatory lysine methylation on several key
non-histone proteins. As the number of lysine methylation events has
greatly expanded over the last few years, this review is by no means
an exhaustive discussion, but rather focuses on some specific methyla-
tion events to highlight regulatory trends and concepts.

2.1. p53 methylation

p53 is a central tumor suppressor and a decision node for triggering
apoptosis [25], which is regulated by lysine methylation (reviewed in
[24,26–28]). p53 methylation was first reported by Reinberg and col-
leagues. In 2004, they showed that Set7/Set9monomethylates p53 at ly-
sine 372 (p53K372me1) [29]. This methylation event was found to
promote the stability of nuclear p53, expression of the p53 target p21,
and DNA-damage induced p53-mediated apoptosis [29], potentially
through preceding and promoting acetylation of p53 [30]. Several
methylation events have also been reported to negatively regulate p53
activity. Smyd2 monomethylates p53 at lysine 370 [31]. This methyla-
tion event represses p53 activity by decreasing its ability to bind pro-
moters of target genes [31]. Huang et al. proposed that K370me1 is a
repressive mark due to a decrease in the fraction of total p53 bearing
the mark at a target promoter upon DNA damage and because Smyd2
expression was inversely correlated with p53-target gene expres-
sion [31]. Interestingly, prior to activating K372 monomethylation
inhibits subsequent K370 monomethylation, but not vice versa, in part
by decreasing the ability of Smyd2 to bind p53 [31]. SET8-mediated
monomethylation at lysine 382was also found to repress p53 transcrip-
tional activation, decreasing expression of p53 target genes [32]. More
recently, G9a and GLP were reported to dimethylate p53 at lysine 373
[33]. As levels of p53K373me2 do not increase with DNA damage
despite a large increase in total p53 levels, this mark is postulated to re-
press p53 activity [33]. Consistentwith this idea, knockdown of G9a and
GLP increased apoptosis, with and without DNA damage [33].

p53 was the first non-histone protein for which regulatory de-
methylation was reported. In 2007, Berger and colleagues showed
that the lysine demethylase LSD1 removes the p53K370me2 mark
[34]. Dimethylation of K370 by a yet to be identified KMT activates
p53 transcriptional activity through the recruitment of 53BP1, a pro-
tein involved in DNA damage signaling and initially identified as a
p53 co-activator [35,36]. LSD1 demethylation of K370me2 disrupts
the interaction between p53 and 53BP1 and thus acts to repress
p53 function [34].

2.2. RelA

RelA/p65 is a component of the canonical NF-κB signaling pathway
that translocates to the nucleus to bind target genes upon signaling
Please cite this article as: K.E. Moore, O. Gozani, An unexpected journey: Ly
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activation. Several lysines in RelA have been reported to be methylated,
including K37, K218, K221, K310, K314, and K315 [37–41]. Levy et al.
provided an example of regulation of NF-κB signaling by methylation.
In a biochemical screen with forty candidate KMTs, SETD6 was identi-
fied as a novel methyltransferase of the chromatin-associated fraction
of the NF-κB subunit RelA [38]. SETD6-mediated methylation of RelA
at lysine 310 (RelAK310me1) rendered RelA inert and attenuated
RelA-driven transcriptional programs, including inflammatory re-
sponses in primary immune cells. The ankyrin repeat from GLP – an
H3K9 methyltransferase involved in transcriptional repression – func-
tioned as a recognition motif for RelAK310me1. Under basal conditions,
SETD6-dependent binding of GLP to RelAK310me1 promoted a re-
pressed chromatin state at RelA target genes through GLP-mediated
H3K9 methylation. This repressive pathway was overridden by NF-κB
activation-linked phosphorylation of RelA by PKCζ at serine 311
(RelAS311ph), which blocked GLP binding to RelAK310me1 and drove
target gene expression [38]. These series of molecular events were the
first description of a lysine methylation-signaling cascade and demon-
strated a newmechanism for how integrated crosstalk betweenmodifi-
cations on transcription factors and histones can modulate gene
expression programs.

2.3. Dam1

Sharon Dent and colleagues have reported the Set1-dependent
methylation of Dam 1 in yeast [42,43]. Dam1 forms part of a complex
that regulates chromosome segregation, and is itself regulated through
phosphorylation by theAurora kinase Ipl1 [42]. Zhang et al. showed that
loss of Set1 catalytic activity suppresses temperature-sensitive inactiva-
tion of Ipl1 [42]. They also found that this genetic interaction can be tied
to Set1-dependent dimethylation of Dam1 at lysine 233 [42]. Thismeth-
ylation event interacts genetically with Ipl1 phosphorylation at nearby
serine residues—K233mutation can be rescued by subsequentmutation
at S232, S234, or S235 [42]. The authors proposed that K233 methyla-
tion inhibits phosphorylation of S232 and S234 [42]. The group later
showed that just as H2BK123 ubiquitination regulates Set1methylation
of H3K4, H2BK123ub is required for Set1methylation of Dam1K233, es-
tablishing that both the histone and non-histone substrate of Set1 are
regulated through the same initial histone modification pathway [43].

2.4. Spliceosomal proteins

The spliceosome is known to be a significant target of argininemeth-
ylation, which plays a role in snRNP assembly (see [44] for a review).
Recent proteome-wide studies indicate that a significant portion of
the spliceosome is also subject to lysine methylation [45–48]. The role
of thismethylation is as-yet unexplored. It is enticing to think that lysine
methylation might modulate splicing through mechanisms such as
spliceosome assembly or splice site selection, but experimental evi-
dence in this area is currently lacking.

2.5. Ribosomal proteins

Methyl-lysinewasdiscovered in ribosomal proteins of S. cerevisiae in
1984 [49]. Enzymes which methylate yeast ribosomal proteins were
first identified in 1989 [50]. These enzymes were dubbed M23 and
M32 because they methylate Y23 and Y32, respectively [50] (the en-
zymes are now referred to as Rkm2 and Rkm1, methylating Rpl12 and
Rpl23, respectively [51]). A number of papers from Steven Clarke and
colleagues describe a series of methylation events on ribosomes and
the correspondingKMTs. TheKMTRkm1dimethylates Rpl23ab at lysine
105 and 109 [52,53] and Rkm2 trimethylates Rpl12ab, most likely at ly-
sine 3 (potentially at lysine 10) [54,55]. Rpl42ab is monomethylated at
lysines 40 and 55 by Rkm3 and ySET7, respectively [55]. Rkm5
monomethylates Rpl1K46 [56]. As discussed in [56], it is unclearwheth-
er these yeast methylation events translate to homologous mammalian
sinemethylation across the proteome, Biochim. Biophys. Acta (2014),
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ribosomal methylation. However, methylated ribosomes have been
independently identified in mammalian samples (for example, see
[45–48,57], reviewed in [51]).

2.6. Translational elongation factors

Methylated elongation factors have been studied in bacteria, fungi,
and mammalian systems since the late 1970s [51], with recent proteo-
mic studies of lysine methylation identifying a large number of addi-
tional modified translation elongation factors [45,48]. Though the
function of elongation factor methylation is still largely unknown, in
E. coli methylation of EF-Tu tracks growth phase and may modulate
EF-Tu's GTPase activity [58] (reviewed in [51]. Among more recent
examples, Lipson et al. described monomethylation of eEF1A by
YHL039W (dubbed Efm1) and dimethylation of eEF1A by See1 in S.
cerevisiae [59]. Couttas et al. later localized these sites of methylation
to K30 and K316, respectively [60]. They also described trimethylation
of EF3AK187 by YBR271W (named Efm2) [60]. For a comprehensive
review of elongation factor methylation, see [51].

2.7. Heat shock proteins

Heat shock proteins represent another class of cytosolic methylated
proteins. Two groups reported Smyd2-mediated HSP90 methylation
[61,62]. Abu-Farha et al. argued that Smyd2 methylates two sites on
HSP90, the predominant one being K615 in the dimerization domain
[61]. They also proposed that HSP90 might be demethylated by LSD1
[61]. Donlin et al. reported Smyd2-mediated monomethylation of
K615 (numbered K616 in their study) [62]. They showed that Smyd2
and methylated HSP90 colocalized with titin and potentially regulate
sarcomeres (and therefore muscle) through this interaction [62].

Two KMTs have been reported to methylate HSP70s: SETD1A and
METTL21A/HSPA-KMT [63,64]. Cho et al. reported SETD1A-dependent
HSP70-K561me2 [63]. They showed that this methylated version of
HSP70 localizes to chromosomes, rather than the cytoplasm, and that
this methylation event may promote an association with Aurora kinase
B that stimulates kinase activity [63]. Jakobsson et al. showed that
METTL21A trimethylates the same residue in several human HSP70s
[64]. Though trimethylation of K561 does not appear to alter basic
HSP70 functions, it does affect the interaction of the HSP70 isoform
HSPA8s with α-synuclein, which is implicated in Parkinson's disease
[64]. Methylation of this conserved lysinewas also observed by Cloutier
et al., who showed that several enzymes from METTL21A's family have
lysine methylation activity [65]. Cloutier et al. also described methyla-
tion of several other HSP70 isoforms, as well as the proteins KIN and
VCP [65].

3. Transducing non-histone methylation signals: “reader proteins”

Lysine methylation pathways are essentially signaling processes. In
response to a signal, a KMT methylates a substrate. This signal is then
transduced by state- and sequence-specific effector proteins, which
read out the methylation event catalyzed by the KMT and translate
that methylation event into downstream responses. As might be ex-
pected, these “reader” proteins have been most extensively studied as
methyl-histone binders. However, several readers have been shown to
bind to methylated lysine in non-histone proteins. Below, we discuss
several of the most-studied non-histone methyl-lysine binders. Exam-
ples of methylation signaling pathways are shown in Fig. 1.

3.1. L3MBTL1

L3MBTL1was originally studied as anH4K20me1/2 andH1bK26me1/2
binder [66]. L3MBTL1 binds methylated lysine through its 3 malignant
brain tumor (MBT) domain repeats [66–68] (reviewed in [69]). L3MBTL1
was known to interact with a transcription regulatory complex involving
Please cite this article as: K.E. Moore, O. Gozani, An unexpected journey: Ly
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Rb [66], and Saddic et al. showed that L3MBTL1 binds Smyd2-catalyzed
Rb monomethylation at lysine 860 [70]. L3MBTL1 also interacts with
SET8-catalyzed p53K382me1, leading to decreased expression of p53-
regulated genes [71]. While full-length L3MBTL1 in these examples has
specific biological functions, the MBT domains of L3MBTL1 appear to
have very little amino acid sequence specificity [45,66,72].

3.2. 53BP1

p53-binding protein 1 (53BP1) was isolated in a two-hybrid
screen for p53 interacting proteins [35]. 53BP1 has been reported
to bind dimethylation of two residues within p53: K370 and K382
[34,73]. At K370, 53BP1 binding is thought to function as a transcrip-
tional co-activator at p53-target genes [34]. For K382me2, the bind-
ing of 53BP1 is proposed to serve as a molecular mechanism by
which DNA double strand break signals are transduced to activate
p53 during the DNA damage response [73]. The sequence surround-
ing K382 of p53 is very similar to that surrounding H4K20. 53BP1 and
L3MBTL1 both bind to methylated H4K20 and p53K382, raising the
idea that sequences in non-histone proteins have evolved to mimic
histone sequences and might therefore be regulated by conserved
reader domains [28,66,71,73–75].

3.3. HP1

The chromodomain ofHP1was thefirst knownmethyl-lysine reader
domain and helped establish the molecular mechanism and structural
basis by which histone methylation marks are transduced [76–78].
The KMT G9a methylates H3K9 [79,80] and has also been reported to
methylate other residues on histones as well as non-histone substrates
[79,81–94]. Several groups therefore asked whether HP1, as a methyl-
H3K9 binder, could also bind non-histone methylation at similar se-
quences. Sampath et al. found that HP1γ interacts with G9a dependent
on an intact G9a automethylation site at lysine 165 [81]. Chin et al. also
found that mouse HP1 interacts with G9a dependent upon the K239
automethylation site [82]. Rathert et al. generalized this idea, showing
that HP1β can bind to methylated peptides representing G9a sites on
WIZ, CDYL1, HDAC1, ACINUS, Kruppel, and G9a [83]. Expanding to a
proteomic scale, Liu et al. assumed that HP1βwould havemany binding
partners and set out to describe its methyl-dependent “interactome”
[47]. They found that, among other proteins, HP1β binds to methylated
DNA-PKcs [47].

4. Functional consequences of non-histone methylation

A recent expansion in methods for proteomic analysis has led to a
large increase in the number of known methylated non-histone pro-
teins. From larger scale “methylomics” studies [45–48], several cellular
processes are emerging as hubs of potential regulation by lysine meth-
ylation. This information facilitates asking functional questions about
what lysine methylation does on a broad scale to establish regulatory
themes.

4.1. Interactions between PTMs on non-histone proteins

On histones, post-translational modifications act in a combinatorial
or antagonistic manner to regulate signaling [69]. Naturally, this con-
cept also applies to methylation of non-histone proteins. For example,
crosstalk has been reported between several PTMs on p53. Huang
et al. showed that methylation at K372 inhibits the interaction of p53
with Smyd2 and subsequent K370 methylation [31] and p53 methyla-
tion at K370 influences p53 acetylation [30].

“Methyl-phospho” switches represent a distinct class of PTM
crosstalk. The classic model of a methyl-phospho switch is H3K9 meth-
ylation and S10 phosphorylation, wherein S10 phosphorylation serves
to inhibit binding of HP1 to methylated K9 [17,95,96]. When Fischle,
sinemethylation across the proteome, Biochim. Biophys. Acta (2014),
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Fig. 1. Examples of methylation signaling pathways. A. Methylation signaling via H3K4me3. Trimethylation of H3K4 by the SET1 family of KMTs leads to recognition of the methylated
histone by PHD finger-containing proteins and downstream regulation of transcription and V(D)J recombination [133–135] (reviewed in [69,123,136,137]). This methylation mark is re-
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RWang, andAllis formally proposed the idea ofmethyl-phospho switches
as “local binary switches,” they also suggested that the concept might
extend beyond histones [97]. Similar switches exist between G9aK165
methylation and T166 phosphorylation [81] and between RelAK310
methylation and S311 phosphorylation [38]. Dam1K233 methylation
also interacts with nearby phosphorylation at residues S232, S234, and
S235 [42]. Another form of interaction between PTMs on non-histone
proteins is through methylation “blocking,” the concept that methyla-
tion could prevent acetylation or ubiquitination (or other lysinemodifi-
cation) of the same residue and thus suppress outcomes associatedwith
those PTMs [98]. However, given that it is unlikely for a lysine to be
100% methylated – and indeed methylated species are likely in the
minority – it is not clear that signaling through competition ofmodifica-
tion systems for a specific residue would be an effective mechanism.

4.2. Methylation and protein-nucleic acid interactions

Of methylated non-histone proteins identified so far, a large portion
form part of a protein–nucleic acid complex (also noted in [99]). For ex-
ample, the ribosome and the spliceosome, both large RNPmachines, are
well-represented among methylated proteins [45–48]. Perhaps this
shouldn't be surprising, given that histones largely function in complex
with a nucleic acid. This trendmay give us clues as to broader regulatory
Please cite this article as: K.E. Moore, O. Gozani, An unexpected journey: Ly
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functions of methylation within the cell. In his review on the subject,
Steven Clarke suggested that one function of methylation of ribosomal
proteins is to encourage their interaction with rRNA [100]. Clarke also
notes that many non-histone methylated proteins are related to tran-
scription, again linking the modification to proteins that interact with
a nucleic acid [100].
4.3. Biophysical functions

Unlike phosphorylation and acetylation, methylation does not
alter the charge of the modified residue. The methyl group consti-
tutes are relatively small change in steric bulk and hydrophobicity
of lysine side chains. These observations suggest that lysine methyl-
ationwould be less likely to play a direct chemical or biophysical role
in protein regulation. One possible direct role for the modification
might be to increase protein stability, through mechanisms such as
decreasing susceptibility to proteases and increasing heat tolerance
(as discussed in [11,56,100–102]), potentially through promoting
intra-molecular interactions that stabilize the polypeptide. Two
groups have also proposed that methylation can negatively regulate
stability, citing decreased DNMT1 half-life when methylated, per-
haps through a proteasome-mediated mechanism [103,104].
sinemethylation across the proteome, Biochim. Biophys. Acta (2014),
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5. Methods for uncovering non-histone methylation

The field of non-histone methylation faces a methods hurdle: most
current studies rely on candidate-based approaches. However, recent
work has focused on the problem of proteome-wide identification of
methylated proteins. Two major proteomic approaches have been
used: peptide and protein array-based assays, and affinity or chemical
enrichment coupled with mass spectrometry.

5.1. Array-based approaches

Peptide and protein arrays have been used to identify non-histone
substrates of KMTs. In the case of peptide arrays, the array often serves
to define a consensus sequence for the methylation-related enzyme in
question,whereas protein arrays are often used to directly test for enzy-
matic targets in a high-throughput manner. Albert Jeltsch and col-
leagues used permutation arrays of peptides based on the previously
known G9a target, H3K9 [79,80], to identify a consensus methylation
sequence for G9a [83]. They then predicted potential G9a substrates
using two methods: searching the proteome for proteins bearing the
consensus methylation motif, and searching known G9a-interacters
for a reduced “RK”motif [83]. Using this method, they identified several
non-histone targets of G9a, including G9a itself, WIZ, ACINUS, CDYL1,
and others [83], supplementing previous reports of non-histone G9a
targets identified by lower throughput methods [81,82]. They also
found that HP1β could bind to trimethylation at several of these non-
histone sites [83]. Using this method, Jeltsch and colleagues also identi-
fied a number of new Set7/9 substrates, including MINT, IRF1, MeCP2,
ZHD8, and PPARBP, among others [105]. Peptide arrays have also been
used to describe substrate specificity for SET8 [106] and Dim-5 [107].

Short peptides represent a minimal in vitro target for KMTs, but
might not present an appropriate recognition surface for enzymes.
Protein (rather than peptide) arrays represent a potentially more
physiological, yet still in vitro, panel of potential KMT substrates. This
approach was validated in Levy et al., which used Invitrogen
ProtoArrays® as a substrate for methylation reactions in order to iden-
tify substrates of Set7/9 and SETD6 [108]. Several of the novel SETD6
substrates identified through the array were validated in cells [108].

5.2. Affinity enrichment coupled to mass spectrometry

Mass spectrometry (MS) is an excellent method for proteomic scale
studies of PTMs. This method has significant advantages over arrays: it
can identify the site, state, and stoichiometry of methylation directly
and it can measure the results of in vivo methylation reactions
representing physiological conditions. However, MS analyses are biased
towards detecting the most abundant proteins, and given the relatively
low abundance of methylation events, few methylation events tend to
be “seen” in a given MS run. This can be circumvented in part through
an enrichment step, which has been the focus of several recent method
development efforts [45–48,84,85].

The most familiar approach for enriching a PTM is affinity
enrichment using antibodies specific for the PTM but not specific to
a particular amino acid sequence (“pan-specific” antibodies). This
strategy has proven successful for phosphorylation, ubiquitination,
acetylation, and arginine methylation [109–112], but has been diffi-
cult to adapt to lysine methylation due to the challenge in develop-
ing high-affinity “pan-methyl” antibodies. The first attempt at
using pan-methyl antibodies for enrichment before mass spectrom-
etry analysis found only four known methylation events on two ly-
sines, both in histones [112]. In that particular study, pull-down
with the pan-lysine-methyl antibody actually led to identification
of a large number of arginine methylation events [112]. Levy et al.
subsequently tested several commercially available “pan-methyl”
antibodies on arrays of post-translationally modified peptides and
found cross-reactivity with other PTMs and insufficiently broad
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sequence specificity [108]. More recently, Bremang et al. compared
the enrichment activity of pan-methyl antibodies with the increase
in proteomic coverage from additional sample fractionation and con-
cluded that the antibodies contributed little in the way of identifying
additional methylation events [46]. The failure of commercial anti-
bodies has prompted others to generate their own polyclonal pan-
methyl antibodies. For example, Ben Garcia's group developed poly-
clonal mono-, di-, and tri-methyl-lysine antibodies which enriched
methylated peptides from tryptic digest of cell lysates, and found a
significant number of novel methylation events [48].

A related approach employs natural methyl-lysine binding domains
to affinity enrichmethylated proteins. Liu et al. used precipitation by the
chromodomain of HP1β, coupled with mass spectrometry, to uncover
the interactome of the protein and novel methyl-lysine-mediated biol-
ogy. They first established the consensus binding sequence of the
HP1β chromodomain using peptide arrays, and then used this to predict
methylation sites within proteins specifically precipitated by the
chromodomain, validating the sites by mass spectrometry [47]. They
directly identified 29 methylated HP1β-interacting proteins [47].

Using a similar approach, Moore and Carlson et al. specifically
precipitated proteins that bound to the3malignant brain tumor domain
repeats (3xMBT) of the L3MBTL1 protein. Several groups had previously
suggested that 3xMBT had sequence promiscuity [67,68,72]. Moore and
Carlson et al. further established that while 3xMBT bindsmono- and di-
methyl-lysine specifically, the sequence andmodifications surrounding
themethylated residue had little effect on 3xMBT binding [45]. Compar-
ison of proteins pulled-down by 3xMBT and a binding-null point
mutant, 3xMBTD355N [67,68] was used to eliminate non-specific pro-
tein–protein interactions. In total, this report identified several hundred
potentially methylated proteins, with methylation directly observed
and validated on 26 lysines [45].

Together, these recent proteomic studies have identified RNA pro-
cessing, transcription, chromatin remodeling/organization, and helicase
activity, among others, as processes where methylation appears to play
a significant role [45–48].

5.3. Chemical enrichment coupled to mass spectrometry

Rather than rely on an antibody or methyl-lysine binding domain to
enrich for methylated proteins, chemical labeling methods also allow
for subsequent enrichment of methylated proteins. In general, these
methods functionalize the methyl-donor, S-adenosyl-methionine
(SAM), with a bioorthogonally-reactive chemicalmoietywhich is trans-
ferred to the substrate protein in place of the methyl group. While this
approach has been conducted with a ketone-functionalized donor
[113], by far the most common method has been functionalizing the
donor with an alkyne- or azide-containing group [84,85,114–116].
Transfer of either of these particular moieties is preferred because
azides and alkynes react in a bioorthogonal, copper-catalyzed cycload-
dition, which can later be used to attach affinity tags or other probes
to the “methylated” target. Other related reactions, including copper-
free, strain promoted cycloadditions, have also been used [84,117].
(These reactions are generally referred to as “click” chemistry, though
the term itself indicates a broader class of reactions.) Several native
methyltransferases, including Dim5, MLL4, and SETDB1, can transfer
alkyne groups to their substrates [114,115]. However, not all native
KMTs accept these cofactors [115].

To generalize this labeling method, Minkui Luo and colleagues
screened a panel of alkyne-functionalized SAM analogs against a set of
G9a mutants to find an active analog–mutant pair [116]. This “bump
hole” approach [118,119] allowed them to access the activity of a pro-
tein which would not, as wildtype, accept a functionalized cofactor.
After validating the concept, they then coupled the bump-hole/click
approach to mass spectrometry [84]. Bump-hole mutants of the related
methyltransferases G9a and GLP were given their cognate analogs in
cell lysate, labeled substrates were “clicked” to a biotin conjugate, and
sinemethylation across the proteome, Biochim. Biophys. Acta (2014),
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then “methylated” substrates were precipitatedwith streptavidin beads
for mass spectrometry analysis [84]. They identified 82 and 64 sub-
strates, respectively, for G9a and GLP [84]. Additionally, this work
helped define the separate substrate repertories of G9a and GLP,
which share several substrates (reviewed in [120])— 64 and 46 of the
substrates identified by Islam et al. were unique, respectively [84]. In
more recent work, Islam et al. analyzed structure–activity-relationships
of active enzyme mutant/modified cofactor pairs, identifying many
more potential G9a and GLP substrates [85]. For a review of chemical
labelingmethods used to study lysinemethylation, see [121]. A compar-
ison of methods for studying lysine methylation is summarized in
Table 1 and reviewed in [98].

6. Moving forward: open questions

6.1. How many proteins are methylated? What is the specificity of various
KMTs?

There are currently more than 60 predicted lysine methyltransfer-
ases and 30 predicted lysine demethylases in the human genome
[122–124]. In total, recent reports have shown that hundreds of pro-
teins may be methylated, some at multiple sites, and to different de-
grees (mono-, di-, tri-) at a given site [45–48,84,85]. It seems likely
that many more methylation events will be uncovered soon. This sug-
gests a comparison between the number of methylation events and
the number of methyltransferases, and raises questions about the de-
gree of specificity of these enzymes. How many substrates should we
suspect a methyltransferase to have?

For several characterized KMTs, the answer is clearly “many”; in vitro,
enzymes like Set7/9 andG9a arepromiscuous [79–94,105,108] (reviewed
in [24,26,27,125]). For example, on protein arrays, Set7/9 methylates
over 300 proteins [108]. Other KMTs appear quite specific, with only
one reported target [24]. KMTs may even be specific for particular sub-
strate states—for example, NSD2/MMSET/WHSC1 has little activity on
free histones but robust activity as an H3K36 dimethyltransferase on
nucleosomes [126,127]. However, for many KMTs and KDMs, there
has been no unbiased proteomic assessment of multi-substrate poten-
tial. Methyl-regulating enzymes are currently being examined as poten-
tial therapeutic targets (reviewed in [128]), so careful analysis of
substrate repertoires and potential promiscuity could have profound
impact on drug development research.

If KMTs and KDMs are not especially specific, wemight also raise the
question of the relative biological importance of multiple methylation
events catalyzed by the same KMT. For example, Set7/9 methylates
multiple sites on histones, including H3K4, as well as many non-
histone substrates [29,30,105,108,129,130] reviewed in [24,26,27,125]
(our unpublished observations), and the biological relevance of any par-
ticular catalyzedmethylation event in vivo is difficult to discern. Despite
Set7/9's many reported substrates, loss of Set7/9 activity in mice has a
U
NTable 1

Comparison of methods for proteomic analysis of lysine methylation.

Method Pros

Peptide array • Generate consensus methylation sequence
• Relative simplicity of in vitro method

Protein array • Full-length protein represented
• Relative simplicity of in vitro method

Pan-methyl antibody- MS • In vivo biological methylation
• Mass spectrometry analysis

Domain affinity-MS • In vivo biological methylation
• Reproducible, engineerable monoclonal
affinity reagent

• Mass spectrometry analysis
Chemical affinity (click)-MS • In vivo biological methylation

• Mass spectrometry analysis
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minimal phenotype, suggesting that the combined effect of losing mul-
tiple methylation events in conjunction with compensation mecha-
nisms will complicate predictions about in vivo phenotypes of specific
methylation reactions [131,132]. In the terminology of Erce et al., we
need to describe the “‘weighted’ networks” of KMT activity [98]. With
respect to pharmaceutical development, understanding the relative
biological functions of methylation events is necessary to ensure that
the relevant methylation events are targeted for intervention.

Another question raised by the large number of global methylation
sites is whether we have accounted for enough enzymes to catalyze
the growing number of methylation events. Without a thorough evalu-
ation of KMT specificity, this is difficult to assess.Might there be another
family of KMTs yet unaccounted for? A core group of enzymes with
well-defined SET and seven-β-strand domains currently dominate the
KMT field, but enzymes bearing more distant homology or other
domain structures might be KMTs. For example, the seven-β-strand
METTL21-related KMT family was identified only recently, and appears
to be related to arginine methyltransferases [65,122]. The possibility
that other such families may exist adds an interesting dimension to
the assignment of methylated proteins to their cognate KMTs.

6.2. Methylation in transcription and translation: shared regulatory
mechanisms?

Transcription and translation both appear as repeated themes
among methylated proteins [45,46,48]. It is intriguing to speculate
that these two fundamental processes could be regulated by similar
mechanisms through lysine methylation. Comparatively little is
known about the function of methylation of translation factors, but
in both cases the ability of methylation to mediate protein–protein
interactions could play a role in fine-tuning protein expression and
activity. Even if methylation acts through different molecular func-
tions in transcription and translation, feedback or co-regulation of
the processes through regulation of the same or related KMTs
presents an interesting possibility.

7. Conclusion

We now know that lysine methylation occurs broadly across the
proteome—at chromatin, elsewhere in the nucleus, and in the cyto-
plasm. It regulates such core cellular processes as transcription and
translation, influencing protein–protein and potentially protein–nucleic
acid interactions. Recent proteomic studies have developed methods to
more efficiently uncover lysine methylation events, elucidating the
“where” of lysine methylation. However, the locations of the methyla-
tion events themselves are only part of the story. To truly understand ly-
sine methylation biology, we need to understand the full signaling
pathways that utilize this PTM. This will require experimental analysis
of the enzymes that catalyze addition and removal of methyl marks, of
Cons References

• Non-physiological
• Enzymes may require cofactors not present in vitro
• Not all enzymes methylate peptides

[83,105–107]

• Non-physiological
• Enzymes may require cofactors not present in vitro
• Missing, incomplete, or incorrectly folded proteins

[108]

• Current commercially-available antibodies unreliable
• Polyclonal antibodies difficult to independently replicate

[46,48,112]

• Protein, rather than peptide, pull-down identifies fewer
PTM sites directly

[45,47]

• Enzyme must accept functionalized cofactor [84,85]
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the effectors that bind to methylation events, and of the direct biophys-
ical and biochemical consequences of methylation. The ability of lysine
methylation to regulate vast swathes of physiological and pathological
biology provides a remarkable example of the biological utility of one
small PTM.
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